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ABSTRACT

We generalize Ralston's result on differentiating error terms to the

hyperosculatory and nonpolynomial cases.
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1.

We generalize Ralston's result [51 on differentiating error terms to the hyper-

osculatory and nonpolynomial cases. This result is used implicitly in (6,71 and ex-

plicitly in [1,2,31.

Theorem 1. Let f: R + R have continuous derivatives in an interval J. Let

xj e J j= 0,1,...,n. Let P(x) be the unique hyperosculatory interpolation poly-
n

nomial of degree < r= E Y satisfyingJ=o j

(k j) (ks) }
P J(x) f (xj)

(1) j=o,l,...,n
kJ= 0,1,.., IN 1, > 1

with xk i x, for k02. Then for x e J, xOxj J=0,1,...,n, we have

r. (r+l) (q

(2) f' (x) -P'(x) = r' (r+l)' W

n Y

where W(x) (x-x , and E and I are in the interval spanned by
J=O

X , X 0 X 1 ,..., Xn

Proof. The error term in the hyperosculatory interpolation (1) is given by

(3) f(x) -P(x) f(r) W(x)r.!

with and W(x) as above (see e.g. [41). To simplify notation we will prove

the theorem for the case yj = s, j=O,...,n.

Let *ij(x) be the unique interpolation polynomial of degree < r satisfying

(k) (x ) = 8ik'8j

ij A ik J
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for j,I=O,...,n; i,k-O,...,s-1. Then
S-I-

s-1) n f(i)

i=0 J=O

and
s-1nd

(4)d (x) F F- +
dx W(x) i=O j=O j dx W(x) dx r!

Let xn+1 x j= 0,...,n and define interpolation polynomials iij(x) by

-(k) (k) (£

ij (x = ij , ijbj'

ij (xn+l 0

-(k) (x) =0O0, n+l (

4O,n+l (Xn+l) = 1

for j,I=O,...,n and i,k=O,...,s-1.

s-I n i)
The polynomial P(x)= F T f ((x j)ij(x) +f(xn+l) O,n+l(x) of degree < r

i=o j=o

satisfies (1) and P(xn+l) )f(x n+l). Therefore we have

f (r+,) co with I in the interval spanned by x, x0  . 9 xf (x) -F(x)=W(X) (X-xn+l )  (r+l): " n

The uniqueness of the interpolation polynomials implies

f $-J (x = $J ( * $i (Xn+l)

( ij~) W jiX- W(Xn+l ) W(x) for J=O,...,n; i=O,...,s-1

(1) = W (x)0, n+l ()=W (Xn+ I ) "
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Hence

s-1 n W' f (x ) (r+l)
ffx ( +__ + ______

W(x) 1-0 J=O0W~x) W(xn+l )  (r+l)! n+l

and

fx f(x ) s-i n Tl(x (r1
1_ f._ W (n+l F F , f M. (x i +. f 0)

(6) .- 0(x)-(n+)  1-o j-o J x-xn+l • w(x) ( l)

For xi x J-0,...,n we now let x n+l x. Since W(xn+, 0 and ij n+l)=0

we have

(1 =(x) 1 W f '(X n+l)

(7) liW ) 1im Tx-+W( ) " W(n "
Xn+I +x x'xn+l W( Xn+l nx n+l

dx W (X) dx W(x)

where the last equality holds by (5).

From (6) and (7) we have

s-I k W)) f(r+l)df. (x M a---l + f W
(8) dx W(x) f ( .1 dx W(x) (r+l).

Comparing (4) and (8) we conclude

d f(r) f(r+l)(n
i ( 9 ) d " " :" ( l )

dx r! - (r+l)!

Differentiating (3) using (9) finally yields (2). 0

Theorem 2. If T e C (r+ l ) (J) is a hyperosculatory interpolating function for f

satisfying (1) (i.e. (1) holds with P replaced by T), then Theorem 1 holds with

(2) replaced by



4.

___r)___(r)_ f(r+)fTr)(

(2') f'(x)-T' r: (f()T() X) + (r+l) W(x)
r(r+l) Wx

Proof. Replace f in Theorem 1 by h= f-T, and note that the unique interpolation

polynomial satisfying (1) for h is P=. 
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